Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids.

Identifieur interne : 000390 ( Main/Exploration ); précédent : 000389; suivant : 000391

Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids.

Auteurs : RBID : pubmed:24308924

Abstract

New transparent conductive materials are urgently needed for optoelectronic devices. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) will be a promising next-generation transparent electrode material if its conductivity is comparable to that of indium tin oxide (ITO). To enhance significantly the conductivity of PEDOT:PSS with mild compounds has practical significance. In this work, significant conductivity enhancements are achieved on PEDOT:PSS films after treatment with mild and weak organic acids. The treated PEDOT:PSS films exibit metallic behavior at room temperature. Their conductivity increases to about 3300 S cm(-1) after they are treated with 8 M methanesulfonic acid. The conductivity enhancement depends on the acidity and physical properties of the organic acids. The mechanism for the conductivity enhancement is ascribed to proton transfer from the mild or weak organic acids to PSS(-) of PEDOT:PSS. There are two factors for the proton transfer from mild or weak organic acids to PSS. One factor is the high acid concentration during the treatment, particularly after the vaporization of the water solvent. Another factor is the phase segregation of PSSH from PEDOT:PSS, because PSSH is hydrophilic, whereas PEDOT is hydrophobic. This method is better than that using very strong and corrosive acids like sulfuric acid. These highly conductive and highly transparent PEDOT:PSS films are promising for use as next-generation transparent electrodes.

DOI: 10.1021/am404113n
PubMed: 24308924

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids.</title>
<author>
<name sortKey="Ouyang, Jianyong" uniqKey="Ouyang J">Jianyong Ouyang</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering, National University of Singapore , 7 Engineering Drive 1, 117576 Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Materials Science and Engineering, National University of Singapore , 7 Engineering Drive 1, 117576</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1021/am404113n</idno>
<idno type="RBID">pubmed:24308924</idno>
<idno type="pmid">24308924</idno>
<idno type="wicri:Area/Main/Corpus">000261</idno>
<idno type="wicri:Area/Main/Curation">000261</idno>
<idno type="wicri:Area/Main/Exploration">000390</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">New transparent conductive materials are urgently needed for optoelectronic devices. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) will be a promising next-generation transparent electrode material if its conductivity is comparable to that of indium tin oxide (ITO). To enhance significantly the conductivity of PEDOT:PSS with mild compounds has practical significance. In this work, significant conductivity enhancements are achieved on PEDOT:PSS films after treatment with mild and weak organic acids. The treated PEDOT:PSS films exibit metallic behavior at room temperature. Their conductivity increases to about 3300 S cm(-1) after they are treated with 8 M methanesulfonic acid. The conductivity enhancement depends on the acidity and physical properties of the organic acids. The mechanism for the conductivity enhancement is ascribed to proton transfer from the mild or weak organic acids to PSS(-) of PEDOT:PSS. There are two factors for the proton transfer from mild or weak organic acids to PSS. One factor is the high acid concentration during the treatment, particularly after the vaporization of the water solvent. Another factor is the phase segregation of PSSH from PEDOT:PSS, because PSSH is hydrophilic, whereas PEDOT is hydrophobic. This method is better than that using very strong and corrosive acids like sulfuric acid. These highly conductive and highly transparent PEDOT:PSS films are promising for use as next-generation transparent electrodes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">24308924</PMID>
<DateCreated>
<Year>2013</Year>
<Month>12</Month>
<Day>26</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids.</ArticleTitle>
<Pagination>
<MedlinePgn>13082-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/am404113n</ELocationID>
<Abstract>
<AbstractText>New transparent conductive materials are urgently needed for optoelectronic devices. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) will be a promising next-generation transparent electrode material if its conductivity is comparable to that of indium tin oxide (ITO). To enhance significantly the conductivity of PEDOT:PSS with mild compounds has practical significance. In this work, significant conductivity enhancements are achieved on PEDOT:PSS films after treatment with mild and weak organic acids. The treated PEDOT:PSS films exibit metallic behavior at room temperature. Their conductivity increases to about 3300 S cm(-1) after they are treated with 8 M methanesulfonic acid. The conductivity enhancement depends on the acidity and physical properties of the organic acids. The mechanism for the conductivity enhancement is ascribed to proton transfer from the mild or weak organic acids to PSS(-) of PEDOT:PSS. There are two factors for the proton transfer from mild or weak organic acids to PSS. One factor is the high acid concentration during the treatment, particularly after the vaporization of the water solvent. Another factor is the phase segregation of PSSH from PEDOT:PSS, because PSSH is hydrophilic, whereas PEDOT is hydrophobic. This method is better than that using very strong and corrosive acids like sulfuric acid. These highly conductive and highly transparent PEDOT:PSS films are promising for use as next-generation transparent electrodes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ouyang</LastName>
<ForeName>Jianyong</ForeName>
<Initials>J</Initials>
<Affiliation>Department of Materials Science and Engineering, National University of Singapore , 7 Engineering Drive 1, 117576 Singapore.</Affiliation>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>12</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/am404113n</ArticleId>
<ArticleId IdType="pubmed">24308924</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000390 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000390 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24308924
   |texte=   Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24308924" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024